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This paper presents some relevant numerical simulations of the three-dimensional evolution of a monochro-
matic lower hybrid wave interacting at the Landau resonance with a Maxwellian electron beam in a magnetized
plasma. A statistical study of the stochastic trapping-detrapping transitions performed by a large set of qua-
siresonant test particles moving self-consistently in the wave’s potential has been carried out using dynamical
criteria based on simple physical arguments. The paper allows us to explain the role of the stochastic processes
at work in the wave-particle interactions and to shed light on their influence on the dynamical evolution of the
system over a long range of time.

DOI: 10.1103/PhysRevE.73.016406 PACS number�s�: 52.35.Mw

I. INTRODUCTION

A three-dimensional wave-particle Hamiltonian model
and the related numerical code have been built recently in
order to describe the nonlinear dynamics of electrons in in-
teraction with electrostatic waves in a magnetized collision-
less plasma. Some important features characterizing the ex-
citation of such waves at the Landau and the cyclotron
resonances by different types of instabilities �fan, loss-cone,
bump-in-tail� as well as the accompanying wave-particle and
wave-wave nonlinear processes have already been published
elsewhere by the authors �1–4�. As the thermal bulk electrons
are nonresonant and do not participate directly to the wave-
particle interactions, even if they influence the waves
through the dielectric tensor, only the resonant particles have
been involved in the numerical calculations. Those are per-
formed by a discrete �particle-in-cell� periodic code using
symplectic methods to calculate the three-dimensional par-
ticles’ dynamics self-consistently with the time evolution of
the three-dimensional waves’ fields.

Considering the case of a single electrostatic wave, it has
been observed �1–5� that the total number N of resonant
particles used in the discrete numerical calculations influ-
ences the long time evolution of the wave amplitude. Typi-
cally, when N is increased, the saturation level reached by
the wave amplitude due to particle trapping decreases and
the slow growth of the wave energy as a function of time
during the saturation stage is reduced, which is particularly
clear in the long time range. Thus it is important to under-
stand how the discrete character of the particles’ distribution
can influence the long time evolution of the wave-particle
interactions and to determine if the observed N-dependence
results from a numerical inaccuracy or from real physical
processes. This problem was recently investigated for a one-
dimensional single plasma-wave system by comparing, for
long time wave-particle interactions, the results provided by
a Vlasov-Poisson kinetic approach and a Hamiltonian finite-
N one-dimensional system �5�; the authors argued that the
kinetic approach hides truly physical plasma effects and that
the N-dependent long time behavior observed in the numeri-
cal simulations should result from the dynamics of the indi-

vidual particles. However, many questions remain not an-
swered yet, even for the one-dimensional case.

As a discrete N-particles description of the system allows
us to follow the full dynamics of the particles in their com-
plex individual interaction with a wave, we argued in a pre-
vious paper �1� that some stochastic processes connected
with the trapping and the detrapping of particles by the wave
should be the main cause of the observed N-dependence of
the wave amplitude. In this paper we show with more details
and with the help of a statistical study of the resonant wave-
particle interactions that the N dependence is not only due to
Schottky noise �which is based on the statistical fluctuations
of the finite number N of charge carriers� but is also con-
nected with the complex dynamics of the particles moving
across the separatrices in the so-called stochastic layer: such
particles can escape from the wave potential trough where
they are trapped or, inversely, if they are passing �untrapped�,
they can be caught by the trough.

This paper presents some relevant numerical simulations
of the nonlinear evolution of a lower hybrid wave interacting
at the Landau resonance with a Maxwellian electron beam in
a magnetized plasma. The specificity of our approach con-
sists to carry out a statistical study of the stochastic transi-
tions �or separatrix crossing� performed by a large set of
quasiresonant test particles moving self-consistently in the
potential trough of the wave. Up to now studies were mainly
conducted considering one or several test particles moving in
the superposition of a single or a few potentials of fixed or
slowly varying amplitudes in magnetized or unmagnetized
plasmas �5–13�. Moreover, when investigating self-
consistent wave-particle Hamiltonian systems �e.g., Refs.
�12–14��, the main interest of the authors was not focused to
study the physical consequences of the separatrix crossing
processes on the wave’s behavior. Thus the present paper is
devoted, by using dynamical criteria based on simple physi-
cal arguments, to point out and to explain the role of the
stochastic processes at work in the wave-particle interactions
and to shed light on their influence on the dynamical evolu-
tion of the system over a long range of time. Note that this
paper is not aimed to support or to develop more general
mathematical problems touching this field of investigation.
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II. HAMILTONIAN MODEL

A. Theoretical description

The motion of an electron p of mass me and charge
−e�0 in the electric field E=−��=−� Re��keik·r−i�kt� of a
single electrostatic wave is described by

dvp

dt
+

e

mec
vp � B0 = −

e

me
E =

e

me
Re�ik�keik · rp−i�kt� ,

�1�

which can also be presented in the Hamiltonian form as

dPp

dt
= −

�H0

�rp
,

drp

dt
=

�H0

�Pp
= vp, �2�

where Pp=mevp−eA0�rp� /c is the generalized particle mo-
mentum, rp�xp ,yp ,zp� and vp are the particle’s position and
velocity, c is the speed of light; �k is the Fourier component
of the potential ��r , t� corresponding to the wave of fre-
quency �k and wave vector k�kx ,ky ,kz�. The vector potential
can be expressed through the constant ambient magnetic
field B0=B0z as A0�rp�= �B0�rp� /2. The Hamiltonian de-
scribing the dynamics of a set of N particles is

H0 = �
p=1

N � �Pp + eA0�rp�/c�2

2me
− e Re��keik · rp−i�kt�� . �3�

The full self-consistent interaction between the wave and the
particles is described using the total Hamiltonian H,

H = H0 + �k�Ck�2, �4�

where the normal amplitude Ck�t�=��k�t�exp�−i�kt�
provides the expression of the wave energy density
Wk=�k�Ck�2 /V; V=LxLyLz is the volume of the system �see
the simulation box below�. In the case considered hereafter
of a lower hybrid wave propagating in a cold background
plasma, one has �=	k2V��c

2+�p
2� /8��k�c

2, where �p and
�c are the electron plasma and cyclotron frequencies, respec-
tively. Then the wave amplitude evolution is described by �1�

�Ck

�t
= − i

�H

�Ck
* = − i�kCk +

ie

2�
�
p=1

N

e−ik · rp. �5�

Considering normalized variables �i.e., v\v/v*,
k→kv* /�c, �k→e�k /mev*

2, where v* is the characteristic
thermal velocity�, the Hamiltonian �4� can be written as

H = �
p=1

N �1

2
�Pp + A0�rp��2 − Re��keik · rp−i�kt�� +

Nk2��k�2

2p
,

�6�

where p= �nb /n0��p
2 / ��c

2+�p
2� is a small dimensionless pa-

rameter which characterizes the electron flux intensity; n0 is
the background plasma density supporting the waves, and nb
the density of the resonant particles �nb=N /V�, with nb /n0

�1. Moreover, one can check that the total parallel momen-
tum is conserved,

d

dt
��

p=1

N

Ppz +
kz

�k

Nk2��k�2

2p
� = 0, �7�

where Ppz=Pp ·z. Then, using the generating function
F1�x ,y ,z ,	 ,X ,Z�=−cot 	�x−X�2 /2−yX+ �z−Z�P which
produces the canonical transformations p=�rF1, J=−�	F1,
Y =−�XF1, and P=−�ZF1, we obtain �omitting the index “p”�

x = X + 	2Jsin 	, y = Y + 	2Jcos 	, z = Z ,

px = − 	2Jcos 	, py = 	2Jsin 	 − x, pz = P . �8�

Therefore in the frame where A0�rp�=xpy, we get

H = �
p=1

N �Pp
2

2
+ Jp − Re��keik · rp−i�kt�� +

Nk2��k�2

2p
, �9�

where Jp and Pp are defined owing to Eq. �8�. Writing
that exp�ik·rp− i�kt�=exp
i�k·Rp+	2Jp�kx sin	p+ky cos	p�
−�kt��, where Rp= �Xp ,Yp ,Zp�, and choosing the axes so that
ky =0 �kx=k��, the Hamilton equation dXp /dt=�YH0=0 leads
to Xp=X0p=cste. Then, performing the canonical transforma-
tions Zp�=Zp+ �k� /kz�X0p and Pp�= Pp derived from the gen-
erating function F2p= �Zp+ �k� /kz�X0p�Pp�, we can write that

eik · rp−i�kt = ei�kzZp�+	2Jpk� sin 	p−�kt�, �10�

and performing a Bessel expansion �Jn is the Bessel function
of order n�, we get

eik · rp−i�kt = �
n=−


+


Jn�	2Jpk��ei�kzZp�+n	p−�kt�. �11�

Extracting in Eq. �11� the Landau resonance term
n=0, which is justified if there is no particle with a parallel
velocity vz close to a cyclotron resonant velocity
vR= ��k+n�c� /kz �n�0�, one can express the right hand

side of Eq. �11� as J0�	2Jpk��eikzZp�−i�kt. If for each particle p
one has 	2Jpk�=k�vp� /�c�1 �vp� is the particle’s perpen-
dicular velocity�, so that J0�k�vp� /�c��1, Eq. �11� can be
reduced to the one-dimensional form

eik · rp−i�kt � ei�kzZp�−�kt�, �12�

which shows that for the Landau resonance and for electrons
of small Larmor radius compared to the wavelength 2� /k�,
one can avoid the effect of the magnetic field in the estimate
of the bounce frequency �b of the trapped particles; then the
normalized value of �b can be considered to be equal to
	kz

2��k�. We have verified such a result by comparing the
simulation results provided by the three-dimensional �3D�
code including the magnetic field with those provided by the
corresponding 1D code.

Finally the effective one-dimensional Hamiltonian H de-
scribing the wave-particle interaction at the Landau reso-
nance can be written, avoiding in Eq. �9� the constant term
�pJp and noting Zp instead of Zp�, as

H = �
p=1

N �Pp
2

2
− Re��kei�kzZp−�kt��� +

Nk2��k�2

2p
. �13�
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B. Numerical code

Owing to the Hamiltonian structure of the model, the cal-
culations can be performed using a symplectic mover �15,16�
with normalized time steps around �
=�c�t�0.1–0.2
whereas checking the numerical accuracy with the help of
the energy and the momentum conservations �6�, �7�. The
symplectic property guarantees the preservation of the phase
space volumes of the system. As one can separate the Hamil-
tonian �6� as H=H1+H2, where

H1 = �
p=1

N
�Pp + A0�2

2
, �14�

the symplectic operator of order 2 in time step,
L��
�=L1��
 /2�L2��
�L1��
 /2�+o��
3�, can be used for
advancing the Hamiltonian H; L1 and L2 are canonical trans-
formations applying to H1 and H2, respectively. The transfor-
mation L1 acts on the particles’ coordinates and velocities as

rp�=rp+ T̂rvp and vp�= T̂vvp �rp and vp are the normalized po-
sition and velocity of the particle p� with

T̂r = 
 sin��
� 1 − cos��
� 0

1 − cos��
� sin��
� 0

0 0 �

�,

�15�

T̂v = 
cos��
� − sin��
� 0

sin��
� cos��
� 0

0 0 1
� .

The transformation L2 for the wave normal amplitude
and the particles’ velocities is performed keeping

constant coordinates, Ck�= C̄k�1−e−i�k�
�+Cke−i�k�
 and vp�

=vp−�kk
Im�C̄keik · rp��
+Re��Ck�−Ck�eik · rp� /�k�, where

the variables �k, k, and Ck are normalized and C̄k
=�pe−ik · rp.

III. NUMERICAL RESULTS

A. Wave evolution in a discrete particle distribution

The initial distributions of the parallel and the perpendicu-
lar velocities vz and v� of the resonant particles are modeled
by Maxwellian functions

f�vz,v�� = fz�vz�f��v��

=
1

�3/2vTz
vT�

2 exp�−
�vz − vz0�2

vTz

2 �exp�−
v�

2

vT�

2 � , �16�

where vTz
and vT�

are the parallel and perpendicular thermal
velocities, respectively; vz0 is the parallel drift velocity. The
resonant electrons are distributed uniformly in space within a
numerical box of size �Lx ,Ly ,Lz� with periodic boundary
conditions; this box contains a finite number of wavelengths
of each wave present in the system. The electrons are distrib-
uted in phase space randomly, or using quiet start methods in
order to decrease the Schottky noise; in the latter case, the
distributions are sampled using the so-called Hemmersley’s
sequence. For a given wave, the presented calculations have
been performed with a total number of resonant electrons N
varying between 105 and 106.

The evolution with time of a single lower hybrid wave
interacting with beam particles has been studied. The Landau
resonant velocity vR=�k /kz of the considered wave lies in
the region of positive slope of the initial parallel velocity
distribution function fz�vz� so that bump-in-tail instability
can occur �see the left upper panel of Fig. 1�. Whereas the
perpendicular velocity distribution function f��v�� does not
exhibit some significative change as a function of the time—
which is expected from the considered resonant
mechanism—the final stage of the parallel velocity distribu-
tion evolution shows the formation of a narrow plateau in the
region where particles interact resonantly with the wave, that
is, near vR. The upper left panel of Fig. 1 presents the super-
position of fz�vz� at the initial and final simulation times, for

FIG. 1. Upper left panel: superposition of the
particles’ parallel velocity distribution fz�vz� �Eq.
�16�� at the initial and the final normalized simu-
lation times, �ct /2�=0 and �ct /2�=15 000,
represented by a grey pattern and a solid line,
respectively; the vertical line indicates the Lan-
dau resonant velocity vR=�k /kz=2.4; fz�vz� and
f��v�� are Maxwellian functions with drift and
thermal normalized velocities vz0=3, vTz

=0.8,
vT�

=0.7. Upper right panel: variation as a func-
tion of �ct /2� of the normalized wave amplitude
��k� in logarithmic scale, for �ct /2��150 �lin-
ear interaction stage�, and for different values of
N : N=105, 2�105, 5�105, 106. Lower panel:
variation as a function of �ct /2� of the normal-
ized wave amplitude ��k� in the full range of
time, for different values of N : N=105 �upper
grey curve�, N=2�105 �upper black curve�, N
=5�105 �lower grey curve�, N=106 �lower black
curve�. The main normalized parameters are the
following: p=0.02, kz=0.3, k�=0.25, �k=0.72.
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N=106. In the linear stage of the evolution �see the domain
�ct /2��100 in the right upper panel of Fig. 1�, the wave
potential amplitude ��k� increases until saturation, with a
normalized growth rate �k /�c�0.01 which fits well with the
theoretical estimate,

�k

�c
�

�

2

p�k

k2 A0� �

�vz
fz�vz��

vR

,

�17�

A0 =� J0
2�k�v��f��v��d��v�

2 � � 1,

that provides approximately the same value �k /�c�0.01 for
the considered conditions. The tiny difference that might ap-
pear between the theoretical and the numerical estimates of
�k is due to Schottky noise but also to the fact that the width
of the resonance is not very small compared to the width of
the beam. Moreover, the final stage of the evolution shows
that the average wave amplitude is slowly �in comparison
with the linear time �k

−1 and the bounce oscillation period
�b

−1 of the trapped particles� and quasilinearly growing with
the time �see the lower panel of Fig. 1�. Note that this inter-
esting feature characterizing the long time evolution of the
nonlinear wave-particle interaction is specific of the kinetic
regime and does not appear in the hydrodynamic instability
limit �1�.

Comparing the variation with time of the wave potential
amplitude ��k� for different values of N, one can observe that
the linear growth rate is nearly the same for all the cases �see
the upper right panel of Fig. 1�. However, a significative
difference appears between the simulations after the stage of
saturation of the instability, when the process of particles’
trapping by the wave begins to take place �see the lower
panel of Fig. 1�: the slope d��k� /dt depends on N in the long
time range evolution. This feature is not predicted and not
observed for Vlasov-Poisson models where N→
 �at least
in the one-dimensional case �5��. Figure 2 shows that
d��k� /dt�N−0.7 whereas the fluctuations of the wave poten-
tial amplitude around its average value,

f��k� = 	���k�2� − ���k��2, �18�

are roughly scaling as N−0.4 �note that the Schottky noise
scales as N−0.5�. Moreover, Fig. 3 shows the Fourier spectrum
of these fluctuations computed over the time domain of wave
saturation, indicating that the wave amplitude oscillations are
controlled by a quite large spectrum of frequencies around
the bounce frequency �b: thus their origin should be related
to the dynamics of the trapped particles moving in the po-
tential well of the wave, as simple Schottky noise would
imply a much wider spectrum of frequencies. Moreover, the
effective many-wave field revealed by the Fourier transform
is responsible for the chaotic dynamics of the particles mov-
ing in the vicinity of the separatrices �trapping-detrapping
processes�: the dependence of d��k� /dt on N is not only due
to the Schottky noise but results more significantly from such
physical processes. These considerations show that a better
understanding of the slow growth and the oscillations of the
wave amplitude after the saturation stage requires an accu-
rate study of the individual particles’ trajectories.

On the other hand, the wave amplitude correlation
function,

R��t� = �Re��k��t��Re��k�t + �t���/�Re��k�t��2� , �19�

has been calculated as a function of the time for different N.
Figure 4 shows that, whatever N is, the wave correlations
decrease slowly with the time according to a smooth and
nonchaotic behavior: the processes of trapping-detrapping
take place in a nonstochastically varying wave field so that
the only stochasticity to be considered should be connected
with the particles’ dynamics. Note that the correlations are
more strong and stable for large values of N, as the Schottky
noise due to the finite number of particles scales as N−1/2.

B. Trapping conditions

Let us investigate if the exchange of energy between the
wave and the particles performing transitions from being
trapped to being untrapped or inversely can influence the
wave amplitude evolution over a long range of time. In a first
approximation, let us neglect the influence on the wave am-
plitude of the particles which remain always trapped or al-
ways passing, as their trajectories are quasiperiodic,

�vtr� � 0, �vps� � const, �20�

where the averaging � � is performed over several bounce
periods; vtr �respectively, vps� is the velocity of a trapped

FIG. 2. Upper panel: root-mean-square deviation of the wave
amplitude, f��k�=	���k�2�− ���k��2, as a function of N; lower
panel: slope d��k� /dt of the function ��k�t�� as a function of N. The
full circles correspond to the simulation results and the lines are
linear fits. The physical parameters are the same as in Fig. 1.
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�respectively, untrapped� particle in the frame moving with
the wave phase velocity v�. Then, considering only electrons
close to the separatrices, we can write that �see also Fig.
5�a��

�vtr� � 0, �vps� = ±
�vR

2
= ±

�b

kz
, �21�

where �vR is the velocity half width between the separatrix
maximum and minimum. Then a particle crossing the sepa-
ratrix, that is, performing a transition, exchanges in average
with the wave an amount of kinetic energy �Ek,

�Ek =
1

2
��vps� + v��2 −

1

2
��vtr� + v��2

=
1

2
��b

kz
�2

±
�b

kz
v� � ±

�b

kz
v�, �22�

as �b��k. An electron close to the separatrix can be
considered untrapped if its kinetic energy Ek�t� oscillates
with an amplitude smaller than half of the width of the cat
eye of the potential, i.e., if �Ek�2��b /kz�v�, where �Ek is
the absolute value of the difference between two successive
extrema of Ek�t� �see Fig. 5�b��, whereas the trapped par-
ticles close to the separatrices are verifying the condition
�Ek�4��b /kz�v�. Note that for deeply trapped particles �far
from the separatrices�, one has �Ek�2��b /kz�v�.

The slow growth of the wave amplitude during the satu-
ration stage can be explained by the occurrence of stochastic
transitions of particles moving near the separatrices that are
successively trapped or detrapped, depending on their dy-
namics in the oscillating stochastic layer. If more particles
are being decelerated than accelerated during the stochastic
transitions, then more particles are on average giving energy
to the wave than receiving energy from it. As in the initial
state the velocity distribution function fz�vz� presents a
positive slope in the region of the wave phase velocity
v�=�k /kz, one can expect that more particles with higher
velocities than the wave �vz�v�� will be trapped than
particles with smaller velocities �vz�v��. To check the va-
lidity of this assumption, let us perform a statistical study of

FIG. 3. Fourier spectrum of the wave amplitude fluctuations �in
arbitrary units�; the frequency � is normalized to the calculated
bounce frequency �b. The Fourier transform has been performed
over the time interval 160��ct /2��4780; the quadratic fit of
��k�t�� has been substracted from ��k�t�� in order to eliminate the
low-frequency components associated with the slow growth of the
wave amplitude. The physical parameters are the same as in Fig. 1,
with N=105.

FIG. 4. �Color online� Wave amplitude correlation function
R��
�= �Re��k�
��Re��k�
+�
��� / �Re��k�
��2� calculated as a
function of the time 
=�ct /2� for different numbers of particles
N=105 �lower solid curve�, 2�105 �lower dashed curve�, 3�105

�middle solid curve�, 5�105 �upper solid curve�, 106 �upper dashed
curve�. The physical parameters are the same as in Fig. 1.

FIG. 5. �a� Schematics of the trajectories of two test particles
moving near the separatrices in the �z ,vz−v�� phase space: the
trapped particle moves along a closed line crossing A and B �inside
the cat eye� whereas the untrapped particle moves outside the cat
eye, crossing the points C and D; �b� variations of the kinetic energy
of a test particle, Ek�t�−Ek�0�, as a function of the time t; �Ek is
the energy jump corresponding to the trapped-detrapped transition;
the points A, B, C, and D of �a� are also reported in �b�.
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the trajectories of particles moving in the vicinity of the
separatrices.

C. Statistical study

1. Criteria and method

For each simulation result presented below, the trajecto-
ries of 5000 test particles selected randomly among the num-
ber of particles whose initial parallel velocity vz verifies
v�−�v��vz�v�+�v� �v�=2.4, �v�=0.3� have been stud-
ied �see also Fig. 1�. The wave amplitude at the saturation
allows us to estimate the resonance width �vR around v�

according to Eq. �21�, i.e., �vR�0.22, justifying the value
chosen for �v� which should include the resonance width,
the stochastic layer, and some amount of passing particles.

The automatized detection of the stochastic transitions has
been carried out as follows. For each test particle, the value
�Ek �defined above, see also Fig. 5�b�� is calculated along its
trajectory. Then, on the basis of the trapping conditions men-
tioned in the previous section, one can impose a threshold
value �Ek

* =3��b /kz�v� so that the particle is considered as
passing �respectively, trapped� if �Ek��Ek

* �respectively,
�Ek��Ek

*�. The inversion of the sign of the function
�Ek−�Ek

* corresponds to an “event,” that is, to a stochastic
transition of the test particle between the trapped and the
untrapped states. This method provides for each test particle
a set of points 
Tev� corresponding to the times of occurrence
of its transitions. Defining 
�T� as the set of time intervals
between two successive transitions, �Ti=Tev,i+1−Tev,i, one
can calculate the energy jump associated with a transition as
the difference of the averaged values of Ek�t� before and
after the transition as

�Ek,i =
1

�Ti
�

Tev,i

Tev,i+1

Ek�t�dt −
1

�Ti−1
�

Tev,i−1

Tev,i

Ek�t�dt ,

�23�

which provides for each test particle a set 
�Ek� of energy
jumps associated with the trapped-untrapped transitions �see
also Fig. 5�b��. We define Nev as the number of events cor-

responding to a test particle, that is, to the number of values
in the set 
�Ek�. This analysis is repeated for each of the
5000 test particles, and the sets 
�T� and 
�Ek� are gathered
to provide data for a statistical study of all the events de-
tected for all the test particles. For illustration, Fig. 6 shows
the variation of the kinetic energy Ek�t�−Ek�0� of a test par-
ticle as a function of the normalized time �ct /2�, pointing
out several transitions from trapped to untrapped states or
inversely �see also Fig. 5�b��.

2. Results and discussion

Figure 7�a� shows the number of transitions Nev detected
as a function of the corresponding calculated energy jumps
�Ek�0 and �Ek�0 �the two curves are superposed�, for
N=105 and 5000 test particles. The small enhancement
around ��Ek��0 results from the detection of fake events
due to a limitation of the automatized method used to detect
the particles’ transitions; indeed, in some cases particles are
quite deeply trapped by the wave, with �Ek�3��b /kz�v�,
and then a small increase of the kinetic energy oscillations’
amplitudes, due to processes like adiabatic heating, for ex-
ample, can be interpreted as a transition; however, the energy
jumps associated with such events are nearly zero. One ob-
serves that both distributions �for �Ek�0 and �Ek�0�
are quite similar, showing that the transitions where a
particle takes some energy from the wave or gives some
energy to it have roughly the same probability to occur,
whatever the total number of particles N is �not shown here�.
The two vertical lines indicate the calculated value of
�Ek��bv� /kz�	���k���k /kz at the beginning of the satu-
ration stage ��bv� /kz�0.3� and at the end of the simulation
��bv� /kz�0.37�. It clearly shows that the width of the dis-
tribution results from the variation of �b�	���k�� over the
full saturation stage. Moreover, Fig. 7�b� shows the variation
of Nev as a function of �Ek�0, for different values of N: the
total number of detected transitions, Nev, as well as the
widths of the corresponding distributions decrease when N
increases, which is in agreement with the fact that the slope
d��k� /dt decreases when N increases �see Fig. 2�. These his-
tograms allow us to compute the kinetic energy variation of

FIG. 6. Variation of the kinetic energy of a test particle, Ek�t�−Ek�0�, as a function of the normalized time �ct /2�. One can see that near
�ct /2��950 the particle with vz�v� is performing a transition from the state where it is trapped to the state where it is untrapped �the
particle is accelerated�; near �ct /2��1720, the particle with vz�v� is trapped and then detrapped near �ct /2��1850, with vz�v�. The
physical parameters are the same as in Fig. 1.
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the sample of 5000 test particles due to stochastic transitions
as

���
p

Ekp�
sample

� �
�Ek

Nev��Ek��Ek. �24�

Then, assuming that all the particles verifying initially
v�−�v��vz�v�+�v� behave like those belonging to the
sample, the variation of the particles’ resonant energy can be
written as

���
p

Ekp� �
NR

NS
�
�Ek

Nev��Ek��Ek, �25�

where NR is the total number of particles in the resonant
domain �v�−�v� ,v�+�v�� and NS=5000 is the number of
particles of the sample. The variation of the wave amplitude
due to the stochastic transitions of the resonant particles can
be evaluated using Eq. �13� while neglecting the potential
energy �which is always observed in the simulations to be at
least two orders of magnitude below the kinetic and the wave
energies�

��1

2
k2��k�2� � −

NR

NS

p

N �
�Ek

Nev��Ek��Ek, �26�

that is

����k�� � −
NR

NS

p

k2���k��N �
�Ek

Nev��Ek��Ek, �27�

where ���k�� is the time-averaged value of ��k�t��. Note that
NR /N is not depending on N and is equal to
�v�−�v�

v�+�v�fz�vz�dvz�0.25 ��v�=0.3�, where fz�vz� is the nor-
malized electron parallel velocity distribution �16�. Table I
allows us to compare the normalized values ����k��est pro-
vided by Eq. �27� with the normalized variations ����k��obs

observed in the simulations, for different values of N, where
we define the relative error � as

� =
�����k��est − ����k��obs�

����k��obs
. �28�

These results show clearly that the observed slow growth
of the wave amplitude after the saturation stage is due to
the deceleration of particles by the wave trough trapping-
detrapping processes. Note that the results are less accurate
when N increases �the number of test particles remains
constant and equal to 5000 whereas the total number
of resonant particles increases from NR�2.5�104 to
NR�2.5�105 when N increases from 105 to 106�.

The time interval �T between two successive stochastic
transitions does not depend on N and scales as a power law,
as shown by Fig. 8,

Nev��T� � �T−2. �29�

One can estimate the average characteristic time between
two successive transitions as

�T̄ =

�
�T

Nev��T��T

�
�T

Nev��T�
, �30�

which is, for the considered case, of the order of several

bounce periods Tb=�b
−1 : �T̄�618
c�25Tb=�Tb ��T is

normalized by 
c=2� /�c�; note that using the average wave
amplitude value ���k���0.02 �see Fig. 1� allows us to esti-
mate that Tb�24
c. Taking into account the results of Fig. 7
which points out the symmetry of the energy exchanges, Fig.
8 allows us to state that on average no energy exchange
between the wave and the particles occurs within a time in-
terval of the order of several �Tb.

FIG. 7. �a� Superposition of the number of transitions Nev de-
tected as a function of the normalized kinetic energy jump �Ek, for
�Ek�0 �thick solid line� and �Ek�0 �thin solid line�; the dashed
vertical lines represent the values of �Ek calculated using the
bounce frequency at the wave saturation time and at the final simu-
lation time; �b� number of transitions Nev detected as a function of
�Ek�0, for three values of N : N=105, 2�105, and 106 �dotted,
solid, and dashed lines, respectively�. The number of test particles’
trajectories examined in each simulation is 5000. The physical pa-
rameters are the same as in Fig. 1, with N=105 for �a�.

TABLE I. Comparison between estimations and simulations.

N ��Ek
Nev��Ek��Ek ����k��est ����k��obs ��%�

105 −260 8.5�10−3 9�10−3 5

2�105 −141 5.4�10−3 6�10−3 10

5�105 −88 3.6�10−3 4�10−3 10

106 −89 3.8�10−3 3�10−3 26
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The variation with time of the number Ntr�t� of particles
trapped by the wave is presented in Fig. 9. Comparing this
figure with the lower panel of Fig. 1 shows that the depen-
dence of Ntr on time is exactly correlated to that of the wave
potential amplitude ��k�t�� so that

��k�t�� � �Ntr�t� , �31�

where ��8�10−6, whatever the value of N. This feature
can be understood in terms of delayed trapping of particles
which are initially far from the stochastic layer: considering
that a particle moving in the stochastic layer does not ex-
change on average any energy with the wave �for time scales
of the order of several �Tb�, which is supported by the re-
sults of Fig. 7�a�, a net transfer of energy between the wave

and the particles is only possible when a particle which is
passing at t� t� undergoes its first trapping at t= t�, entering
by this way in the stochastic layer �t���k

−1� . The Eqs. �22�
and �27� allow us to evaluate the wave amplitude variation
due to the first trapping of a particle as follows:

����k��1part � ±
NR

NS

pv�

k2���k��1/2N
. �32�

Introducing � as the probability that the trapping involves an
electron of velocity vz�v�, one can write the average varia-
tion of ��k� due to the trapping at t= t� of a particle passing at
t� t� as

����k��1part �
NR

NS

pv�

k2���k��1/2N
�2� − 1� , �33�

which allows us to evaluate the total variation of ��k� due to
the delayed-trapping processes as

����k�� �
NR

NS

pv�

k2���k��1/2N
�2� − 1��Ntr, �34�

where �Ntr�0 is the increase of the number of trapped par-
ticles inducing the variation ����k�� �Eq. �34�� of the wave
amplitude. The function �Ntr�t� should be related to the
wave’s amplitude oscillations around its averaged value and
to the slope of the parallel velocity distribution function
around the wave phase velocity. Integrating Eq. �34� over the
time interval �t0 , t� leads to the estimate �where t0��k

−1�

��k�t�� � ��k�t0�� +
NR

NS

pv�

k2���k��1/2N
�2� − 1��Ntr�t� − Ntr�t0�� .

�35�

In order to be in accordance with the simulation results �31�,
Eq. �35� should provide that ��85%: the variation of the

FIG. 8. Variation of the nor-
malized number of transitions Nev
as a function of the normalized
time interval �c�T /2� between
two successive transitions, for dif-
ferent values of N : N=105

�crosses�, 2�105 �full circles�, 5
�105 �stars�, and 106 �circles�. On
this logarithmic plot, the points
provided by the simulations are
fitted by a linear slope around −2.
The number of test particles’ tra-
jectories examined in each simula-
tion is 5000. The physical param-
eters are the same as in Fig. 1.

FIG. 9. Variation of the number Ntr�t� of particles trapped by the
wave as a function of the time �ct /2�. The values of the total
number of particles used in the simulations are N=105, 2�105,
5�105, and 106 �from the upper to the lower curve, respectively�.
The number of test particles’ trajectories examined in each simula-
tion is 5000. The physical parameters are the same as in Fig. 1.

ZASLAVSKY, KRAFFT, AND VOLOKITIN PHYSICAL REVIEW E 73, 016406 �2006�

016406-8



wave amplitude can be understood in terms of delayed trap-
ping if 85% of these trapping events are involving passing
particles with vz�v�.

Figure 10 shows that the number of passing particles at
the time t whose parallel velocity vz is smaller than the wave
phase velocity v�, Nvz�v�

�t�, remains roughly constant during
all the saturation stage �see the lower curve�; meanwhile the
passing particles whose velocities vz are larger than v� are
“definitively” trapped in the potential well of the wave and
their number Nvz�v�

�t� decreases monotonically with the
time �see the middle curve� at roughly the same rate as
the number Ntr�t� of particles trapped by the wave at t grows
�see the upper curve�. Thus one can evaluate the probability
� as the ratio of the rate of decrease of the passing particles
with higher velocities than the wave phase velocity,
�vz�v�

=dtNvz�v�
, to the rate of increase of trapped particles,

�tr=dtNtr. In the case of the quasilinear variations observed
here, �vz�v�

/�tr can be reduced to the ratio of the variation
of the number of passing particles with vz�v� to the varia-
tion of the number of trapped particles during the same time
interval,

� = −
�vz�v�

�tr
= −

�Nvz�v�

�Ntr
. �36�

Using Fig. 10 and Eq. �36� yield that ��90% for N=105,
which is in good agreement with the estimate of � �Eq. �31��,
showing the correlation between the wave amplitude evolu-
tion after the saturation and the phenomenon of delayed trap-
ping of particles by the wave. It seems obvious that � should
be related to the slope of the parallel velocity distribution
function around the resonant velocity vR : � is larger than
50% as there are initially more particles with vz�v� than
with vz�v�. For a flat initial distribution, ��fz�vz� /�vz�=0,
one should have �=50% and no nonlinear growth of
the wave amplitude, as no asymmetry can exist in
the trapping of particles. It is possible to evaluate � on an

analytical basis, considering that the probability for a
particle to be trapped by the wave is the same for the
vz�v� and for the vz�v� particles: in this case, one should
have �� fz�v�+�v�� / �fz�v�−�v��+ fz�v�+�v���, providing
��75% and ��6�10−6, which is in good agreement with
the observed value ��8�10−6. Anyway, some additional
and not yet explained physical features might be at the origin
of the slight difference observed in the probability of trap-
ping of the two groups of particles. Note also that in all the
previous evaluations, no possibility of “delayed detrapping”
of the particles is considered ��Ntr�0�: as the wave ampli-
tude and thus the width of the potential well increases with
the time in the considered physical problem, the probability
that an initially trapped �or moving in the stochastic layer�
particle becomes “definitively” untrapped can be considered
as equal to zero.

Finally, let us discuss the influence of the time step used
in the symplectic mover on the rate of occurrence of the
stochastic transitions with time. For all the results presented
above we used the normalized time step �c�t=0.2; more-
over, we checked by comparing with simulations performed
with �c�t=0.02 that the physical results were qualitatively
the same and quantitatively quite similar. One just observes
that the number of events in Fig. 6 is a little bit underevalu-
ated when using the larger time step, but the shape of
the distributions is the same for both time steps. It seems that
an extremely weak asymmetry between the �Ek�0 and
the �Ek�0 transitions appears when �c�t=0.02 contrary
to the case �c�t=0.2, but the larger number of events
detected for �c�t=0.02 can explain this result. For both
time steps, the variation of Ntr�t� shows a very similar be-
havior, justifying the use of �c�t=0.2 for all the presented
simulations.

IV. CONCLUSION

The statistical study based on the simulation results pre-
sented above points out some important features of the
physical processes governing the self-consistent interactions
of a discrete set of N particles with a single wave in a mag-
netized collisionless plasma. In particular, it demonstrates
that the long time evolution of the wave amplitude does not
only depend on the Schottky noise effects related to the num-
ber of particles in the system, but also on the specific dynam-
ics of the quasiresonant particles moving in the vicinity of
the so-called stochastic layer. Indeed, the trapped particles
moving in the wave potential well near the separatrices can
be detrapped and become passing particles or, inversely, un-
trapped or detrapped particles in the vicinity of the separa-
trices can be caught by the wave. Such transitions of par-
ticles through the stochastic layer are connected to the fact
that the wave amplitude �and thus the potential trough and
the related separatrices� is oscillating during the self-
consistent interaction of the wave with the deeply trapped
particles.

Moreover, the paper shows that the stochastic transitions
performed by the quasiresonant particles determine the long
time evolution of the amplitude of the wave interacting with
the beam electrons. This evolution is shown to be directly

FIG. 10. Variation as a function of �ct /2� of the number of
trapped particles Ntr�t� �upper line�, of the number of passing par-
ticles Nvz�v�

�t� with a parallel velocity vz larger than the wave
phase velocity v� �middle line� and of the number of passing par-
ticles Nvz�v�

�t� with vz�v� �lower line�, for N=105. The number of
test particles’ trajectories examined in each simulation is 5000. The
physical parameters are the same as in Fig. 1.
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connected to the number of particles trapped by the wave.
Applying dynamical criteria to the particles moving near the
separatrices, it appears that a test particle moving inside the
stochastic layer does not exchange, on a time scale of several
bounce periods �b

−1, any energy with the wave. Thus the
observed net variation of the wave energy during a time scale
of the order of thousands �b

−1 can only be due to the entry in
the stochastic layer, after times much larger than the satura-
tion time, of particles initially moving outside the potential
well: these particles are considered to undergo a so-called
delayed trapping.

Our statistical method allows us to follow the evolution
with time of the population of passing particles, showing that
the number of delay-trapped particles verifying initially
vz�v� is larger than the one verifying initially vz�v�, ex-
plaining the increase of the wave energy. This effect is
shown to be related to the specific shape of the parallel ve-
locity distribution function destabilizing the wave at the Lan-
dau resonance: as �fz�vz� /�vz�0 around the wave phase ve-
locity, there are more passing particles able to be delay-
trapped with vz�v� than with vz�v�. Then, the slope of the

wave amplitude growth after the saturation only depends on
the function �Ntr�t�, that is, on the number of delay-trapped
events which occurred before the time t. This function has
not been studied in detail in the present paper, but should be
related to the oscillations of the wave amplitude around its
averaged value, f��k�=	���k�2�− ���k��2.

Finally, preliminary studies show that for a three-
dimensional cyclotron resonant interaction where the role
of the magnetic field is determinant �as the fan instability
at the anomalous cyclotron resonance, for example�, most
of the features described above are relevant. A detailed
study of this case will be the subject of a forthcoming
paper.
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